USING CATIA V FOR PRODUCT LIFE CYCLE MANAGEMENT
In addition to knowledge and data management capabilities, PLM companies need fully generative relationships between the design of their manufacturing-ready geometric models and their mathematical simulation models, which include structural, thermal, and CFD analysis. Simply having the CFD model show up in the same graphics window as the CAD model is not enough. The CFD data has to fully reside in the PLM software's data management system. Only then can engineers rapidly turn their CAD models into flow models, and perform the comprehensive knowledge-based optimization studies needed to develop the best products in the shortest time. It is CATIA V5 technology that makes this possible.
Phase 1: Conceive
Imagine, specify, plan, innovate
The first stage in idea is the definition of its requirements based on customer, company, market and regulatory bodies’ viewpoints. From this specification of the products major technical parameters can be defined.
Parallel to the requirements specification the initial concept design work is carried out defining the aesthetics of the product together with its main functional aspects. For the industrial design, Styling, work many different media are used from pencil and paper, clay models to 3D CAID computer-aided industrial design software.
In some concepts, the investment of resources into research or analysis-of-options may be included in the conception phase – e.g. bringing the technology to a level of maturity sufficent to move to the next phase. However, life-cycle engineering is iterative. It is always possible that something doesn't work well in any phase enough to back up into a prior phase – perhaps all the way back to conception or research. There are many examples to draw from.
Phase 2: Design
Describe, define, develop, test, analyze and validate
This is where the detailed design and development of the product’s form starts, progressing to prototype testing, through pilot release to full product launch.
It can also involve redesign and ramp for improvement to existing products as well as planned obsolescence. The main tool used for design and development is CAD. This can be simple 2D drawing / drafting or 3D parametric feature based solid/surface modeling.
Such software includes technology such as Hybrid Modeling, Reverse Engineering, KBE (knowledge-based engineering), NDT (Nondestructive testing), Assembly construction.
This step covers many engineering disciplines including: mechanical, electrical, electronic, software (embedded), and domain-specific, such as architectural, aerospace, automotive, ...
Along with the actual creation of geometry there is the analysis of the components and product assemblies. Simulation, validation and optimization tasks are carried out using CAE (computer-aided engineering) software either integrated in the CAD package or stand-alone. These are used to perform tasks such as:- Stress analysis, FEA (finite element analysis); kinematics; computational fluid dynamics (CFD); and mechanical event simulation (MES). CAQ (computer-aided quality) is used for tasks such as Dimensional tolerance (engineering) analysis.
Another task performed at this stage is the sourcing of bought out components, possibly with the aid of procurement systems.
Phase 3: Realize
Manufacture, make, build, procure, produce, sell and deliver
Once the design of the product’s components is complete the method of manufacturing is defined.
This includes CAD tasks such as tool design; creation of CNC Machining instructions for the product’s parts as well as tools to manufacture those parts, using integrated or separate CAM computer-aided manufacturing software.
This will also involve analysis tools for process simulation for operations such as casting, molding, and die press forming. Once the manufacturing method has been identified CPM comes into play.
This involves CAPE (computer-aided production engineering) or CAP/CAPP – (production planning) tools for carrying out factory, plant and facility layout and production simulation. For example: press-line simulation; and industrial ergonomics; as well as tool selection management.
Once components are manufactured their geometrical form and size can be checked against the original CAD data with the use of computer-aided inspection equipment and software. Parallel to the engineering tasks, sales product configuration and marketing documentation work will be taking place. This could include transferring engineering data (geometry and part list data) to a web based sales configurator and other desktop publishing systems.
Phase 4: Service
Use, operate, maintain, support, sustain, phase-out, retire, recycle and disposal
The final phase of the lifecycle involves managing of in service information. Providing customers and service engineers with support information for repair and maintenance, as well as waste management/recycling information. This involves using tools such as Maintenance, Repair and Operations Management (MRO) software.
It is easy to forget that there is an end-of-life to every product. Whether it be disposal or destruction of material objects or information, this needs to be considered since it may not be free from ramifications.
All phases: product lifecycle
Communicate, manage and collaborate
None of the above phases can be seen in isolation. In reality a project does not run sequentially or in isolation of other product development projects. Information is flowing between different people and systems.
A major part of PLM is the co-ordination of and management of product definition data. This includes managing engineering changes and release status of components; configuration product variations; document management; planning project resources and timescale and risk assessment.
For these tasks graphical, text and metadata such as product bills of materials (BOMs) needs to be managed.
At the engineering departments level this is the domain of PDM – (product data management) software, at the corporate level EDM (enterprise data management) software, these two definitions tend to blur however but it is typical to see two or more data management systems within an organization. These systems are also linked to other corporate systems such as SCM, CRM, and ERP.
Associated with these system are project management Systems for project/program planning.
This central role is covered by numerous collaborative product development tools which run throughout the whole lifecycle and across organizations. This requires many technology tools in the areas of conferencing, data sharing and data translation. The field being product visualization which includes technologies such as DMU (digital mock-up), immersive virtual digital prototyping (virtual reality) and photo-realistic imaging.
User skills
The broad array of solutions that make up the tools used within a PLM solution-set (e.g., CAD, CAM, CAx...) were initially used by dedicated practitioners who invested time and effort to gain the required skills.
Designers and engineers worked wonders with CAD systems, manufacturing engineers became highly skilled CAM users while analysts, administrators and managers fully mastered their support technologies.
However, achieving the full advantages of PLM requires the participation of many people of various skills from throughout an extended enterprise, each requiring the ability to access and operate on the inputs and output of other participants.
Despite the increased ease of use of PLM tools, cross-training all personnel on the entire PLM tool-set has not proven to be practical. Now, however, advances are being made to address ease of use for all participants within the PLM arena. One such advance is the availability of “role” specific user interfaces. Through tailorable UIs, the commands that are presented to users are appropriate to their function and expertise.
Commonly referred to as a 3D Product Lifecycle Management software suite, CATIA supports multiple stages of product development (CAx), from conceptualization, design (CAD), manufacturing (CAM), and engineering (CAE). CATIA facilitates collaborative engineering across disciplines, including surfacing & shape design, mechanical engineering, equipment and systems engine
Phase 1: Conceive
Imagine, specify, plan, innovate
The first stage in idea is the definition of its requirements based on customer, company, market and regulatory bodies’ viewpoints. From this specification of the products major technical parameters can be defined.
Parallel to the requirements specification the initial concept design work is carried out defining the aesthetics of the product together with its main functional aspects. For the industrial design, Styling, work many different media are used from pencil and paper, clay models to 3D CAID computer-aided industrial design software.
In some concepts, the investment of resources into research or analysis-of-options may be included in the conception phase – e.g. bringing the technology to a level of maturity sufficent to move to the next phase. However, life-cycle engineering is iterative. It is always possible that something doesn't work well in any phase enough to back up into a prior phase – perhaps all the way back to conception or research. There are many examples to draw from.
Phase 2: Design
Describe, define, develop, test, analyze and validate
This is where the detailed design and development of the product’s form starts, progressing to prototype testing, through pilot release to full product launch.
It can also involve redesign and ramp for improvement to existing products as well as planned obsolescence. The main tool used for design and development is CAD. This can be simple 2D drawing / drafting or 3D parametric feature based solid/surface modeling.
Such software includes technology such as Hybrid Modeling, Reverse Engineering, KBE (knowledge-based engineering), NDT (Nondestructive testing), Assembly construction.
This step covers many engineering disciplines including: mechanical, electrical, electronic, software (embedded), and domain-specific, such as architectural, aerospace, automotive, ...
Along with the actual creation of geometry there is the analysis of the components and product assemblies. Simulation, validation and optimization tasks are carried out using CAE (computer-aided engineering) software either integrated in the CAD package or stand-alone. These are used to perform tasks such as:- Stress analysis, FEA (finite element analysis); kinematics; computational fluid dynamics (CFD); and mechanical event simulation (MES). CAQ (computer-aided quality) is used for tasks such as Dimensional tolerance (engineering) analysis.
Another task performed at this stage is the sourcing of bought out components, possibly with the aid of procurement systems.
Phase 3: Realize
Manufacture, make, build, procure, produce, sell and deliver
Once the design of the product’s components is complete the method of manufacturing is defined.
This includes CAD tasks such as tool design; creation of CNC Machining instructions for the product’s parts as well as tools to manufacture those parts, using integrated or separate CAM computer-aided manufacturing software.
This will also involve analysis tools for process simulation for operations such as casting, molding, and die press forming. Once the manufacturing method has been identified CPM comes into play.
This involves CAPE (computer-aided production engineering) or CAP/CAPP – (production planning) tools for carrying out factory, plant and facility layout and production simulation. For example: press-line simulation; and industrial ergonomics; as well as tool selection management.
Once components are manufactured their geometrical form and size can be checked against the original CAD data with the use of computer-aided inspection equipment and software. Parallel to the engineering tasks, sales product configuration and marketing documentation work will be taking place. This could include transferring engineering data (geometry and part list data) to a web based sales configurator and other desktop publishing systems.
Phase 4: Service
Use, operate, maintain, support, sustain, phase-out, retire, recycle and disposal
The final phase of the lifecycle involves managing of in service information. Providing customers and service engineers with support information for repair and maintenance, as well as waste management/recycling information. This involves using tools such as Maintenance, Repair and Operations Management (MRO) software.
It is easy to forget that there is an end-of-life to every product. Whether it be disposal or destruction of material objects or information, this needs to be considered since it may not be free from ramifications.
All phases: product lifecycle
Communicate, manage and collaborate
None of the above phases can be seen in isolation. In reality a project does not run sequentially or in isolation of other product development projects. Information is flowing between different people and systems.
A major part of PLM is the co-ordination of and management of product definition data. This includes managing engineering changes and release status of components; configuration product variations; document management; planning project resources and timescale and risk assessment.
For these tasks graphical, text and metadata such as product bills of materials (BOMs) needs to be managed.
At the engineering departments level this is the domain of PDM – (product data management) software, at the corporate level EDM (enterprise data management) software, these two definitions tend to blur however but it is typical to see two or more data management systems within an organization. These systems are also linked to other corporate systems such as SCM, CRM, and ERP.
Associated with these system are project management Systems for project/program planning.
This central role is covered by numerous collaborative product development tools which run throughout the whole lifecycle and across organizations. This requires many technology tools in the areas of conferencing, data sharing and data translation. The field being product visualization which includes technologies such as DMU (digital mock-up), immersive virtual digital prototyping (virtual reality) and photo-realistic imaging.
User skills
The broad array of solutions that make up the tools used within a PLM solution-set (e.g., CAD, CAM, CAx...) were initially used by dedicated practitioners who invested time and effort to gain the required skills.
Designers and engineers worked wonders with CAD systems, manufacturing engineers became highly skilled CAM users while analysts, administrators and managers fully mastered their support technologies.
However, achieving the full advantages of PLM requires the participation of many people of various skills from throughout an extended enterprise, each requiring the ability to access and operate on the inputs and output of other participants.
Despite the increased ease of use of PLM tools, cross-training all personnel on the entire PLM tool-set has not proven to be practical. Now, however, advances are being made to address ease of use for all participants within the PLM arena. One such advance is the availability of “role” specific user interfaces. Through tailorable UIs, the commands that are presented to users are appropriate to their function and expertise.
Commonly referred to as a 3D Product Lifecycle Management software suite, CATIA supports multiple stages of product development (CAx), from conceptualization, design (CAD), manufacturing (CAM), and engineering (CAE). CATIA facilitates collaborative engineering across disciplines, including surfacing & shape design, mechanical engineering, equipment and systems engine